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Abs t r ac t .  The energy t h a t  i s  depos i ted  i n  the  ionosphere,  by i n t e r n a l  

atmospheric g r a v i t y  waves propagating upward f r m  below, i s  assessed  on 

t h e  b a s i s  of r ecen t  observa t iona l  da ta .  The implied hea t ing  r a t e s  a r e  

found t o  range from 10’ K/day (near  t he  95-km l e v e l )  t o  100’ K/day 

.(near 140 km), and they the re fo re  compete wi th  s o l a r  r a d i a t i o n  as the  
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pr imary source of hea t ing  i n  t h e  ionospher ic  E region.  The t i d a l  input  

may be comparable, but  i t s  he ight  of depos i t i on  i s  more d i f f i c u l t  t o  a s s e s s .  

The r e s i d u a l  wave energy t h a t  reaches t h e  F reg ion  c a r r i e s  a f l u x  t h a t  may 

exceed 10 -4 2 
watt/m , so i t  may p lay  a s i g n i f i c a n t  r o l e  i n  determining t h e  

h e a t  budget of t hese  higher  levels. 

r e v e r s i b l e  temperature f l u c t u a t i o n s  of ,+ 10 

The waves should be acconpanied by . 

0 K and more, low i n  t h e  E reg ion ,  

and they  may the re fo re  account f o r  i r r e g u l a r  temperature s t r u c t u r e  t h a t  has  

been repor ted .  
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In t roduc t ion .  The bulk of the  atmosphere above t h e  tropopause appears  t o  

r ece ive  i t s  hea t  energy pr imar i ly  through t h e  absorp t ion  of o p t i c a l  

r a d i a t i o n  [Murlzatrovd and Goody, 19581. A t  very high a l t i t u d e s ,  however, 

a d d i t i o n a l  sources  of hea t ing  a re  a v a i l a b l e  and may become s i g n i f i c a n t  on 

occasion.  One such source i s  provided by i n t e r n a l  a t ~ o ~ p h e r i c  g r a v i t y  

_ _ _ _ _ ^  W ~ V C ~ ,  - =hi& give evidence c?f propagating dynamical energy upward through 

1 

t h e  mesosphere i n t o  the  ionospheric  reg ions  [Hines,  1960, 1963a, b]. 

The hea t ing  t h a t  may be caused by these  waves i s  assessed  i n  t he  

p re sen t  paper. It i s  found t o  be s u f f i c i e n t  t o  modify temperatures  i n  the  

E region,  and may in fact  account for the very rapid r ise  of temperature 

(with inc reas ing  he ight )  t h a t  occurs there .  Residual  wave energy, 

propagat ing i n t o  the  F reg ion ,  c o n t r i b u t e s  a small but  s e n s i b l e  anount t o  

the h e a t  budget of t he  h igher  l e v e l s .  Revers ib le  temperature changes a r e  

a l s o  generated by the waves, of an amplitude t h a t  should be d e t e c t a b l e  and 

may a l ready  have been observed. 

E a r l i e r  estimates. The present  d i scuss ion  fol lows upon another  [Hines,  1963al 

t h a t  w a s  l imi t ed  t o  h e i g h t s  near 95 km. A t  t h o s e - l e v e l s ,  i t  was es t imated ,  

wave energy was being d i s s i p a t e d  by molecular v i s c o s i t y  a t  a r a t e  of about 

5 x lo-' watt/kg, and a corresponding hea t ing  r a t e  of a few degrees  per  day 

was i n f e r r e d .  

an atmosphere of mean molecular m a s s  29 and a s p e c i f i c  h e a t  pe r  molecule of 

i n s o f a r  as heatips bag concerned, 

II 

(One wa t t /kg .wi l l  produce hea t ing  a t  a rate of 80' K/day, i n  
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5 x joules/'K. This estimate depended s e n s i t i v e l y  on the spectrum 

thzit was assuned f o r  t h e  d i s t r i b u t i o n  of wave energy, a s  between modes of 

d i f f e r e n t  wavelengths, and t h a t  spectrum could be i n f e r r e d  only crudely.  

A t  the  same t i m e ,  the then cu r ren t  e s t ima te  o f  t u r b u l e n t  

d i s s i p a r i o n  near the 85-kai I e v d ,  of 7 x I O  watt/kg [ ~ l e r n m t  and d e  3c?ger, 

1951; Gieenh0~~7, 19591; w a s  noted as producing a hea t ing  o f '  srialiez 3.~: 

s i m i l a r  magnitude. An eddy v i s c o s i t y  about equal t o  t en  t ines t h e  

siolecular v i s c o s i t y  w a s  a l s o  in fe r r ed ,  and would have implied a d i s s i p a t i o n  

of wave energy a t  a ra te  of 5 x 10 

have t o  be d i s s i p a t e d  by the  turbulence i n  tu rn ,  2nd though i? exceeded 

t h e  e s t ima te  of turbulence d i s s i p a t i o n  by almost two o rde r s  of magnitude, 

the discrepancy w a s  n o t  considered t o  be s e r i o u s  i n  view of t h e  gross  

-3  

-1 watt/kg. Though t h i s  energy would 

u n c e r t a i n t i e s  i nhe ren t  i n  all the estimates and, indeed, i n  t h e  very 

a 2 p l i c a b i l i t y  of s tandard turbulence concepts. 

Instead,  t h e  view was adopted t h a t  a reasonably c o n s i s t e n t  p i c t u r e  

had been evolved, i n  which t u r t u l e n c e  w a s  maintained i n  being by t h e  wave 

system, and i n  which a hea t ing  of a few degrees p e r  day could be 2roduced 

by the waves. This  hea t ing  might r e s u l t  p r imar i ly  by d i r e c t  molecular 

d i s s i p a t i o n ,  o r  i t  might proceed mainly v i a  t he  in t e rmed ia t e  process of 

turbulence.  In either event,  i t  w a s  comparable t o  t h e  average hea t ing  

produced a t  t he  sane l e v e l s  by t h e  absorpt ion of s o l a r  r a d i a t i o n  [Murkacrovd 

and Goodyz 19581, and must, of course,  exceed t h e  r a d i a t i v e  inpu t  a t  n i g h t  

and i n  the winter po la r  regions ( i f  a s imi l a r  r a t e  obtained) .  A secondary 
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source of h e a t  i n  t h e  lat ter regions appears  t o  be requi red ,  t o  o f f s e t  t h e  

r ap id  r a d i a t i v e  cool ing t h a t  would otherwise r e s u l t ,  and so t o  maintain t h e  

r a t h e r  high temperatures t h a t  a r e  ind ica t ed  t h e r e  [Murzatrovd and Goody, 

19581. 

chemical release [Kel loqg,  1961; Maeda, 1963; Younp and Eps te in ,  19621 

c r  pcssihly by nrnuatic heating [Maede, 19641, but t h e  r o l e  of i n t e r n a l  

g r a v i t y  waves and assoc ia ted  turbulence appeared a l s o  t o  m e r i t  f u r t h e r  

Such a source could be provided by subsidence and r e l a t e d  photo- 

examination. 

New E-reaion estimates. It i e  now pospible to estimate the gravity-wave 

d i s s i p a t i o n  a t  middle l a t i t u d e s  by a t o t a l l y  independent means, and t o  

extend t h e  c a l c u l a t i o n  upward in  he ight .  Most v a l u a b l e i f o r  t h i s  purpose 

i s  t h e  a n a l y s i s  by Kochanski [1964] of t h e  v e r t i c a l  v a r i a t i o n  of wave 

amplitude as revealed by numerous rocke t - re leased  vapor trails .  Th i s  

a n a l y s i s  i s  no t  wholly f r e e  from unce r t a in ty ,  f o r  the  separa t ion  of wave- 

induced winds from the  background w a s  and w i l l  remain open t o  some ainbiguity, 

bu t  t h e  r e s u l t s  neve r the l e s s  c o n s t i t u t e  a tremendous advance and provide t h e  

bes t  information of t h e i r  type c u r r e n t l y  ava i l ab le .  

Theory show& t h a t ,  i n  an isothermal  nond l s s ipa t ive  atmosphere, 

f r e e  from background wind shear ,  t h e  amplitude of t h e  wave-induced h o r i z o n t a l  

wind speed (U ) should increase  wi th  a l t i t u d e  (c) as t h e  gas  d e n s i t y  (Q ) 

decreases ,  t he  product 

X 

remaining cons tan t  [Hines, 19641. It was 
- -  

Q uX 

I ’  I 



I . 
i. 

I . 4 

found by Kochznski [ 19641 , however, that 

(1) 
2 puX ac exp - ( z / z o )  

with z 0 = 7.6 km ( 2 )  

over the height range 70-140 km. 

and the cited value of z 

(Ux is represented by Kochanski as W, 

is derived from the exponential decrease of 
0 

 ax^/ described on p.  3659 oi iiis paper.j e 
This observed decrease of wave energy with increase of height 

night be due in part to partial reflection, associated with the height 

variation of temperature or of background wind that occurs in practice; 

some such reflection could provide a reasonable explanation, in terms of 

a standing-wave component, for ionization stratifications that are reported 

to occur at certain preferred heights at lower levels (as reviewed, for 

example, by Ellvett and Watts [1959]).. On the other hand, viscous 

dissipation is known to be strong for the wavelengths observed [Hines, 19601, 

and much of the energy must be going into heat whether the remainder is 

reflected or not. This view isq strengthened by the observed increase 

of minimum half-wavelength (with increasing height), as revealed by the 

vapor-trail analyses of Rochanski [1964, Fig. 81 and Zimmerman [1964], both 

of which give excellent agreement with the theoretical viscous cut-off 

[Hines, 19641. The following calculation of energy dissipation neglects 

partial reflection, but its conclusions are unlikely to be in error by more 

than a factor of two on this account. 

I .  
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Low i n  t h e  E region,  t h e  bulk of t h e  gravity-wave energy r e s i d e s  i n  

modes those v e r t i c a l  wavelength ( 1,) i s  of t h e  o rde r  10 km [Kochanski, 19641, 

This  i s  c o n s i s t e n t  with t h e  wavelength of 12 km i n f e r r e d  by Hines [1960] 

f r o m  var ious  r e p o r t s  of meteor d a t a ,  including t h a t  of Greenhow and 

Xeufeld [1959], and t h e  wav2 period (2) i n f e r r e d  from t h e  l a t t e r  r e p o r t  
f .  

V J S S  about 1.2 x 10- sec. These waves would have a v e r t i c a i  component of 

g o " ?  velocizy (V Z ) about equai i n  magnitude t o  t h e  vertical phase speed: 

Vz 2 ),,/T 2 1 m / s .  

energy d e n s i t y  i s  given very nea r ly  by p U  X 2/2.  

f l u x  i s  given by 

They o s c i l l a t e  n e a r l y  h o r i z o n t a l l y ,  ar;d t h e i r  mean 

Their  v e r t i c a l  energy 

and t h e  v e r t i c a l  convergence of t h i s  f l u x ,  -dP z /dk, y i e l d s  t h e  ra te  a t  

which they are l o s i n g  t h e i r  energy. 

r e s u l t s  f r o m  t h e  v e r t i c a l  v a r i a t i o n  of temperature i s  n e g l i g i b l e  i n  

2 coxparison t o  t h e  v a r i a t i o n  of pUx given by (1) and (2) ,  so  t h e  wave 

system a p p e a r s  t o  be l o s i n g  energy a t  t h e  r a t e  

c a l c u l a t e d  f o r  a u n i t  mass of t h e  atmosphere, t h e  ra te  of energy loss  

The v e r t i c a l  v a r i a t i o n  of V z t h a t  

vz/2z0. When 
P U X  

becomes 

E = ux2 vz /2  zo. (4) 

Kochanski f i n d s  U 

with t h e  va lues  of V Z and x 0 a l r eady  given t o  y i e l d  a n , e s t i m a t e  of 

'= 40 m / s  a s  a mean amplitude a t  95 km, which combines 
X 

-1 E -  - 10 watt /kg,  

a .  
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This e s t i x a t e  may be s i i g h t l y  high (because o f  p a r t i a l  r e f l e c t i o n s )  

o r  s l i g h t l y  low (because i t  makes no e x p l i c i t  provis ion €or t h e  energy borne 

by modes of smaller s c a l e  and s h o r t e r  per iod,  f o r  most of which Vz would be 

g r e a t e r ) .  It i s ,  however, t o t a l l y  independent of t h e  mechanism -- 
m o l e c d a r  o r  t u r b u l e n t  -- t h a t  is  assumed t o  be removing t h e  wave energy, 

t o t a l l y  independent of c o e f f i c i e n t s  t h a t  p e r t a i n  t o  those mechanisms, and 

-2  -1 
n e n t  with the  ear l ie r  est imates  of wave d i s s i p a t i o n ,  5 x 10 o r  5 x 10 

watt/kg, i s  t h e  more remarkable on t h i s  account. Even the  discrepancy t h a t  

p e r s i s t s ,  between i t  and t h e  e a r l i e r  estimate of t u rbu len t  d i s s i p a t i o n ,  i s  

so;:.mhat r e i i e v e d  by t h e  higher values  t h a t  a r e  now being a s soc ia t ed  with 

turbulence (e.g., 1.5 -3.5 x 10 watt/kg [Roper and E l fo rd ,  1963; Noel ,  19631, 

and even 7 x 10 watt/kg [ 3 .  E. Blamont, p r i v a t e  communication]). 

-2  

-2  

Regardless of i t s  rou te ,  the d i s s i p a t e d  wave energy should appear 

0 
n l t i m a t e l y  a s  hea t ,  and i t  i m p l i e s  a hea t ing  r a t e  of t h e  order  10 

A s  previously ZrgLed, c h i s  heat  i npu t  i s  coniparable Lo t h e  average r a d i a t i v e  

inpu t ,  and I ts  dominance over t h e  l a t t e r  a t  n igh t  and i n  t h e  winter  p o l a r  

K/day. 

r eg ions  must be a n t i c i p a t e d .  

An even more s t r i k i n g  conclusion can be reached f o r  somewhat 

higher  l e v e l s .  Around 105-110 km, Kochanski r e p o r t s  Ux 2 55 m / s ,  which 

combines with earlier va lues  t o  y i e l d  E 2 4 x 10 

of about 30 K/day. 

-1 
wat t /kg  o r  a h e a t i n g  

0 

decreases  t o  40 m/s once again near  t h e  140-km l e v e l ,  bu t  t h e  ux 

waves t h a t  s t i l l  remain observable as waves are  confined t o  wavelengths 

This  i s  t o  be expected from viscous quenching c r i te r ia  h,  2 30 km. 
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[FLnes, 1960, 19543. ( Inc iden ta l ly ,  t h e  dissLpat ion he re  cap. 20 lonzer  

proceed v i a  curbulecce,  f o r  the turbulence terminates  t y p i c a l l y  a t  h e i g h t s  

a, iCG-iiO kr.1 [e.g., B:ZT.O::? and de Jager,  isiil]. The inc rease  of inoiecuiar 

kinematic  v i s c o s i t y  more than makes up f o r  t h e  l o s s  of eddy v i s c o s i t y  as a 

d i s s i p a t i v e  mechanism, however.) These quenching c r i t e r i a  f u r t h e r  

i nd iczze  fka r  r'ne period LO be sssociaceci wich che Zimiring n <i.e., 32, kxtj 

i s  no g r e a t e r  than 10 sec,  and t h e  v e r t i c a l  phase speed i s  then c l o s e  t o  

30 z / s o  V w i l l  be sonewhat less than t h i s ,  bu t  che er.ergy dens i ty  w i l l  

.-:iceed ?Ex / 2  by a compensating f a c t o r .  

\ 

z 
3 

Z 

2 The implied d i s s i p a t i o n  ra te  

0 
exceeds i watc/kg, and l e a d s  t o  a h e a t i n g  of t h e  order  100 K/day. This 

conclusion n u s t  be modified by t h e  f a c t  t h a t  Kochanski r e p o r t s  t h e  waves 

t o  be p re sen t  a t  140 km f o r  only 50 percent  of t h e  t i m e ,  but  t h a t  conclusion 

i n  tcr:. n u s t  be q u a l i f i e d  because h i s  method of a n a l y s i s  i s  such a s  t o  

- 7  .,.L,,irnize -. t h e  r o l e  t h a t  i s  a t t r i b u t e d  t o  t h e  l a r g e r - s c a l e  waves t h a t  a r e  

r e l e v a n t  here.  

Doubtful though the exact  value of t h e  dynarnical hea t ing  r a t e  

may be, t h e r e  i s  no denyihg the i rnplIc&ion t h a t  a very s u b s t a n t i a l  h e a t  

i npu t  i s  a v a i l a b l e  from i n t e r n a l  g r a v i t y  waves i n  the E region.  This  

hea t ing ,  of course, exceeds the r a d i a t i v e  i n p u t  a t  n igh t ,  and may very 

w e l l  exceed t h a t  i n p u t  even when both are i n t e g r a t e d  over 24 hours. 

i n  f a c t ,  be t h e  primary cause f o r  t h e  very r a p i d  r i s e  of temperature with h e i g h t  

t h a t  i s  found i n  t h e  E region -- t h e  r e l a t i v e  ra te  of i n c r e a s e  being t h e r e  

t : 7 ~  r;laxirnm achieved i n  the  v b l e  of t h e  atnos2here -- and, by l i m i t i n g  the  

flow of h e a t  dow.ward from t h e  F region,  i t  may e x e r t  a s t r o n g  in f luence  on 

the  temperature of t h e  whole thermosphere. 

It may, 
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F-repion heat ing.  

worth evaluat ing,  though t h e  u n c e r t a i n t i e s  i n c r e a s e  once again.  A 

d e n s i t y  of about 3 x 10 kg/m3 o b t a i n s  a t  140 km [:CIRA, 19611 , and 

combines w i t h  o t h e r  values  a l r eady  given t o  y i e l d  an energy f l u x  of 

about 7 x w a t t / m  as the i n p u t  t o  the overlying F region,  50 pe rcen t  

of t h e  t i m e .  Th i s  e s t i m a t e  could be low by as much as an o rde r  of 

magnitude, con t r ibu ted  by t h e  l a r g e r - s c a l e  waves t h a t  blend i n t o  the 

' r e s i d u a l  wind' i n  Kochanski's ana lys i s .  Such waves, i f  r e spons ib l e  f o r  

ionospheric  t r a v e l i n g  d i s tu rbances  as has  been argued [Hines, 19601, 

are i n  f a c t  p re sen t  most of  t he  t i m e  [Heisler, 19631. Their energy 

d e n s i t y  could equal ,  and t h e i r  Vz's tend t o  exceed, t h e  values  employed 

above. A mean energy f l u x  exceeding 10 w a t t / m  is t h e r e f o r e  a d i s t i n c t  

p o s s i b i l i t y .  

The d i r e c t  i npu t  of wave energy t o  the  F region i s  

-9 

2 

-4 2 

-3  2 For purposes of comparison, i t  i s  usua l  t o  c i te  10 w a t t / m  

z 
(= 1 erg/cn /sec) as the r a t e  a t  which t h e  F region g ives  up i t s  heat 

e-iergy, v i a  thermal conduction i n t o  t h e  E region [Bates,  1951: 

X a r r i s  and P r i e s t e r ,  1962;L Johnson, 19581. 

thought t o  be suppl ied by t h e  extreme u l t r a v i o l e t  component of s o l a r  

Nuat ard vah a,dt, 1461; 

Much of t h i s  energy i s  

r a d i a t i o n ,  which carries a flux about t h r e e  times as g r e a t  [Hall e t  a l ,  1963; . 

H i n t e r e m e r ,  19611. However, t h i s  flux i s  v e r t i c a l l y  i n c i d e n t  on ly  a t  t h e  

subsolar  po in t ,  it i s  present  a t  a l l  only by day, and i t s  conversion t o  

h e a t  i s  thought t o  be only 15-30 percent  e f f i c i e n t  [Chamberlain, 1961; 

Hanson and Johnson, 19611. I t s  a b i l i t y  t o  m e e t  t h e  h e a t i n g  requirements 

of the F region i s  doubtful ,  and no o t h e r  s o l a r  r a d i a t i o n s  have been 
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- zi;i~occ:t-~ to i.I&i<e up t he  i e f i c i e n c y .  indeeci, one s n a l y s i s  iz7rr:-is and 

- ; - - e =  -r, 19621 suggests  t h a t  E second h e a t  s o c c e  02 quize d i f f e r e n t  

d i u r n a l  var ia t ic ;n  nay be rsquii-ed t o  account f o r  t he  observed densicy 

- .  

v a r i a t i o n s .  

= o r  tkis F region. It i s  c e r r a i n ,  fo: one thing,  t ha t  t h e  e n t i r e  er,ersy 

f l u x  -chat  encers  t h a t  region will d e g m e r a t e  io hezz rhere .  Yoreover, 

because o f  var ia tL3ns i n  t h e  (as y e t  zcknown) sources  of  t he  waves, and I 

because of t i d a l  changes t h a t  w i l l  a f f e c t  t h e i r  passage through t h e  E r eg ion ,  

tke f l u x  w i l l  undoubtedly concziin soae d i u r n a l  modulation. Any specu la t ion  

a s  t o  rhe  phase o r  amplitude of  such a modulation would be i d l e  a t  t he  

presezlt time, however, and so  w i l l  n o t  be pursued he re .  

>:Lpnetic storzs. 

an a d d i t i o n a l  component of the gravity-wave spectrum may 3 e  antLcipated. 

Yais  i s  because of t h e  in t ens ive  hez t ing  t h a t  occurs 13 t h e  a u r o r a l  zones, 

w.,sse s p a t i a l  znd temporal s c a l e s  l i e  within t h e  range t h a t  could e f f i c i e n t l y  

c sup ie  energy i n t o  t h e  waves. It has been suggested by T. Gold [ p r i v a t e  

cmmunication] t h a t  energy might be t r anspor t ed  from the  a u r o r a l  zones t o  

lower l a t i t u d e s  by means o f  t h e  g r a v i t y  waves, and thereby provide for t h e  

zxcessive hea t ing  t h a t  i s  revealed by s a t e l l i t e s  a t  such t i m e s  [Jaccbtia, 196Y-J .  

A t  times of xagne r i c  storms and a c t i v e  a u r o r a l  d i s p l a y s ,  
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This  suggest ion meets no p a r t i c u l a r  d i f f i c u l t y  wi th  r e s p e c t  t o  t r a v e l  t i m e s ,  

f o r  t h e  energy could propagate t o  lower l a t i t u d e s  a t  speeds of almost 1000 

m / s  i n  a ducted mode [ c f .  Press  and Harkrider ,  1962, Fig.  61 t h a t  i s  r e s c d e d ,  

f o r  example, by t h e  gravity-wave component of t h e  h i g h - a l t i t u d e  nuc lea r  

b l a s t  waves repor ted  by Obavashi [1962, no te  added i n  proof] and, by a 

s m a l l  but  important  c l a s s  of ionospheric  t r a v e l i n g  d is turbances  found i n  

the  data of Twoten i i 8 6 i j  and ’v’aiverde ji85Sj. The magr i i~ude  of the 

e f f e c t  i s  sub jec t  t o  uncer ta in ty ,  however, and remains f o r  f u r t h e r  

examination when more su i t ab le  d a t a  become a v a i l a b l e .  

Revers ib le  hea t ing  i n  the  E region.  The hea t ing  t h a t  has  been t r e a t e d  t o  

this  p o i n t  has  been i r r e v e r s i b l e ,  t he  energy being l o s t  from the  wave system. 

However, u n t i l  d i s s i p a t i o n  becomes severe  i n  any given mode, t h a t  mode 

produces r e v e r s i b l e ,  a d i a b a t i c  hea t ing ,  as one f a c e t  of i t s  o s c i l l a t i o n .  

The f r a c t i o n a l  temperature v a r i a t i o n s  ( S T / T )  a r e  r e l a t e d  t o  U by 
X 

where P, R and X for a given mode a r e  a s  def ined by equat ions  (15) - (17) o r  

(23)- (25) of Hines [1960]. 

reduce t o  the  s impler  form 

The f u l l  express ions  are complicated, but  

4 -1 & T / T ~ +  i ( x -  1) c uX 

when, as i s  t h e  case  f o r  the  dominant E-region waves, 1 
apprec iab ly  the  l o c a l  s c a l e  he igh t  of t h e  atmosphere, and ‘t i s  s u b s t a n t i a l l y  

g r e a t e r  than ‘C Z 2SCg ( I -  1) (which i s  t h e  Brunt-Vaissala per iod  

does no t  exceed 
Z 

-1 -% 
g 
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for an isothermal atmosphere). 

C the speed of sound, and g the acceleration due to gravity; 

izdicates a phase quadrature between the time or place of maxima in 6T 

and Ux, while the "&" uncertainty can be eliminated if the horizontal 

direction of phase propagation is known in relation to the direction of U . 
The temperature deviations that arise if T tends toward '% exceed those 

Here 8 is the ratio of-specific heats, 
the "i" 

X 

n 
ii,dicated by- (61, ---^-- 2-1-a 

p A U V . L U C U  t he  redtriction ofi >\ is rstaincd. The theor>' 
Z 

is based on an assumed isothermal atmosphere, but this idealization should 

not seriously restrict the validity of (5) and (6) as first approximations. 

On the insertion of representative values into ( 6 ) ,  it will be 
0 found that temperature fluctuations of ,t 10 

E region, and as much as ,+ 30 K at 110 km, quite typically. Irregular 

temperature profiles just below the 100-km level have been inferred by 

sound-ranging methods, with deviations often as large as 2 10 

r . .  P and these deviations apparently exceed the probable 

error of measurement [ Sm; t h  et It is natural to suggest that 

they represent the reversible heating imposed dynamically by gravity 

waves, rather than quasi-static anomalies or purely spurious results. 

This suggestion is amenable t o  a detailed check (with respect to phase as 

R can be expected low in the 
0 

' 

0 -  
K,. 

~ I ~ L , L (  1. 

well as amplitude) by refined programs of simultaneous temperature and wind 

sensing, and these programs could be extended to include density variations 

when measurement techniques improve slightly. Such analyses would go far 

towards consolidating or clarifying the picture of irreversible heating 

previously presented, in addition to their more direct benefits. 
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' . 'del  a d  Dreva i l inq -wind  i n p u t .  The atmospheric 

energy ._?.to t he  E region and d i s t r i b u t e  i t  through 

t i d e s  c a r r y  s i g n i f i c a n t  

higher  l e v e l s .  They 

should n o t  be ignored i n  any d i scuss ion  of  dynamical i npu t ,  though t h e i r  

r o l e  i s  d i f f i c u l t  t o  assess a t  present .  

The semidiurnal t i d e  a t  the  base of t h e  E region e x h i b i t s  a 

0 v z r t i c a ?  v a r i a t i o n  o f  phase amounting t o  3-7 /lim [Greenhow and Neufelr l ,  19611, 

wl~ich corresponds t o  a l z  of 50-i20 km. 

trails reveal t i d a l  ' s  m o r e  of t he  order  30 km [Kochanski, 19641, and 

t w o  sequences of t r a i l s  [Rosenberg 'EdwwiA,  19641 suggests  . t h a t  t h i s  

should again be a s soc ia t ed  with t h e  semidiurnal  component. It would be 

convenient i f  t h e s e  h ' s  were t o  correspond t o  the  so -ca l l ed  ' 2 ,  2' mode 

of t i d a l  o s c i l l a t i o n  t h a t  predominates a t  ground l e v e l  and i n  ' resonance'  

theory,  and whose a s soc ia t ed  ' e f f e c t i v e  he igh t  of t h e  atmosphere' i s  

h = 7.9 h i  [e.g. Wilkes, 19491; but  they don ' t ,  nor i s  t h e r e  any good 

reason ~ i n y  they should [Xines, 1963al. 

Higher i n  t h e  E region, vapor 

a d  z 

z A 

z 

Tney imply, i n s t ead ,  modes wi th  h 2 2.6 km, when i n t e r p r e t e d  on 

the b a s i s  of conventional t i d a l  theory,  but t h e i r  i d e n t i f i c a t i o n  can be 

3.- ... d e  n o  more p r e c i s e  than t h a t .  This i s  unfortunate,  f o r  t he  r e l a t i o n  

bettjeen observed winds and corresponding energy f l u x e s  v a r i e s  considerably 

f r o m  one mode t o  another ,  as an examination of t h e  formulae (33), ( 3 4 )  and 

(39) of Wilkes [1949] w i l l  reveal .  (The concept of a v e r t i c a l  group speed 

i s  no longer v a l i d ,  because o f  t h e  d i s c r e t e  n a t u r e  of t h e  spectrum of t i d a l  

-.odes.) Rearesentat ive c a l c u l a t i o n s  may be c a r r i e d  ou t ,  neve r the l e s s ,  and 

they susges t  t h a t  t h e  semidiurnal t i d a l  f l u x  upward i n t o  t h e  E region i s  



1 3  

2 
z j o u t  wa:t/n , while the energy d e n s i t y  

jou ie /x  x d  SD t he  e f f e c t i v e  v e r t i c a l  speed 

2 m / s .  The f i g u r e s  are based on a speed of 

3 

-3 a t  9 0  km i s  about 5 x 10 

of energy flow i s  about 

20 m / s  f o r  t h e  semidiurnal 

tidal wLnd a t  90 krn [Greenhow and Neufeld, 19611, on an h 2 4 km, and 

on unce r t a in  t r igonometr ic  f a c t o r s  which arise i n  the mode ana lys i s  and 

which render  the e s t ima tes  of f l u x  and speed suspect  by a f a c t o r  of fou r  

i;r sa. 

T k s e  values  of f lux,  d e n s i t y  and speed, are q u i t e  comparable t o  

thcss o f  t h e  gravity-wave system low i n  t h e  E region. Tne t i d a l  energy, 

i f  deposi ted t h e r e ,  should produce a hea t ing  & Che sane v J e r 1  t h a t  a l r e a d y  

lnierreci f o r  t h e  g r a v i t y  wavss; 

a5 

i f  deposited a t  higher  levels, t he  

h e a t i n g  could be even g rea t e r .  

This r a i s e s  a f u r t h e r  po in t  of u n c e r t a i n t y  with r e s p e c t  t o  the  

t i d e s :  t h e  he igh t  of energy depos i t i on .  It s e e m s  q u i t e  c l e a r  t h a t  t h e  

energy i s  l a r g e l y  removed fro= t h e  t i d a l  wave i t s e l f  below h e i g h t s  of 115 km 

,[Ernes, 196Oj. 

does 011 occasion 

l i k e  a constancy 

Even when the  wave p e n e t r a t e s  to  g r e a t e r  h e i g h t s ,  as i t  

[e.g., Kochanski, 19641, i t  does no t  maintain anything 

of  PU, . 2 The energy might be deposi ted i n  h e a t  through 

:'ne d i r e c t  a c t i o n  of v i s c o s i t y  o r  through a cascading of energy i n  t h e  

gravity-wave spectrum,but hydromagnetic d i s s i p a t i o n  -- o r ,  equ iva len t ly ,  

I&E 'ohiiic l o s s '  o r  ' j o u l e  heat ing '  -- seems also t o  be a s t r o n g  

coritender [Hines, 1963al. In  t h e  course of such d i s s i p a t i o n ,  however, 

e l e c t r i c  f i e l d s  a r e  e s t ab l i shed  and ac t  t o  extend t h e  whole t i d a l  

phenomenon upward t o  l e v e l s  t h a t  t h e  t i d a l  wave i t s e l f  i s  unable t o  reach 

(2s  r e v i e x z l  by F e j e r  [ 19641 o r  Hines [1963a], f o r  example). 
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The exterit t o  vhich :he semidiurnal t i d e  i s  i n  f a c t  c a r r i e d  

upward e ;ec t rodynmica l ly  i s  by no means c l e a r ,  conventional theory t o  

the  conzrary.  

v e r z l c a l  v a r i a t i o n  of t i d a l  wind i n  t h e  E region,  whereas a l l  r e c e n t  

information suggests  t h a t  v a r i a t i o n  t o  be s t rong.  

t o  discharge,  low i n  t h e  E i-egioii, i-iluch of t h e  e l e c t r i c  f i e l d  t h a t  wnuld 

o t k c r t ~ i s c  build u p 2  z ~ c !  to produce t h e r e  most of t h e  ohinic l o s s e s  of t h e  

S 3- s :ern. 

Tnis  i s  because conventional theory n e g l e c t s  any 

I ts  e f f e c t  would be 

Limited da ta  e s l s t  t o  suggest t h a t  t h e  d i u r n a l  t i d e  e x h i b i t s  

l i t t l e  v a r i a t i o n  of phase with h e i g h t  [Greenhow and H a l l ,  19601, and, 

if c o n f i n e d ,  they may i m p l y  a l o c a l  source f o r  t h i s  t i d e  r a t h e r  than 

upward propagation through the mesosphere. S i m i l a r l y ,  t h e  p r e v a i l i n g  

.i:lrds of t h e  E region would be generated p r imar i ly  by l o c a l  i npu t ,  and 

should not  be expected t o  r eve r se  themselves wi th in  t h e  E region. I n  

any event,  t h e . d i u r n a 1  t i d e  [e.g. Rato, 19561 and t h e  p r e v a i l i n g  winds 

[vt7 Sz'sSm, 19621 a r e  now receiving lnc reas ing  a t t e n t i o n  as t h e  l i k e l y  

sob:css of  t h e  quiet-day ionospheric cu r ren t  system, and i t  i s  t h e i r  

energy r a t h e r  than t h a t  of the semidiurnal t i d e  t h a t  would then c o n t r o l  

t h e  electrodynainic system a t  higher  a l t i t u d e s .  

Begardless of t he  d r iv ing  agency, some estimate may be made of 

t h e  j o u i e  hea t ing  t h a t  i s  associated with t h e  observed magnetic v a r i a t i o n s .  

One c a l c u l a t i o n  i s  provided by Cole [1962], and i t  implies  a d i s s i p a t i o n  of 

5 x 10 watt/m , i n  a region centered on t h e  140 km l e v e l .  This i s  

c e r t a i n l y  compatible wi th  the semidiurnal t i d a l  f l u x  c i t e d  above, while 

-5 2 



t he  appropr i a t e  f i g u r e s  f o r  t he  d i u r n a l  and p r e v a i l i n g  components are 

unknown. It is, moreover, as Cole p o i n t s  ou t ,  of p o s s i b l e  s i g n i f i c a n c e  

t o  t h e  h e a t  budget of t h e  higher  levels. While i t  is  less by an o rde r  

of magnitude than t h e  r e q u i s i t e  140-km f l u x  previous ly  quoted, i t  is  

ais0 unce r t a in  by an order  of magnitude. (The l o c d  d i s s i p a t i o n  rate 

t o  which this corresponds,  a t  the 140-km l e v e l ,  can be c a l c u l a t e d  on ly  

i f  an e x p l i c i t  assumption is made as t o  t h e  magnitude of t h e  a s soc ia t ed  

t 

e l e c t r i c  f i e l d s .  Representat ive c a l c u l a t i o n s  suggest t h e  r a t e  t o  be 

about 3 x 10 

25 X/day, but  aga in  with a s u b s t a n t i a l  uncer ta in ty . )  

-1 
watt/kg, which would produce a hea t ing  r a t e  of about 

0 

of t h i s  f i n a l  s ec t ion ,  
I n  suIlrmaryAthen, n e i t h e r  the propagat ion of t i d a l  energy i n t o  

t h e  ionosphere,  nor  t he  electrodynamic t r a n s f e r  of t i d a l  and p r e v a i l i n g  wind 

energy wi th in  t h e  ionosphere, should be neglec ted  i n  any s e r i o u s  a t t e m p t  

a t  e s t a b l i s h i n g  the  normal thermal budgets of t h e  var ious  upper a tmospheric  

regions.  But t h e  s p e c i f i c  r eg ions  i n  which these  processes  w i l l  be most 

s i g n i f i c a n t ,  and t h e  degree of t h e i r  s i g n i f i c a n c e ,  cannot y e t  be e s t a b l i s h e d  

with use fu l  prec is ion .  
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